Quadratics (1)

- 1. (a) State the relation between a, b and c such that the equation $ax^2 + bx + c = 0$ (a $\neq 0$) has equal roots.
 - (b) If the equation $a^2x^2 + 3abx + ac + 2b^2 = 0$ ($a \neq 0$) has equal roots, show that the roots for the equation $ac(x + 1)^2 = b^2x$ (a, b, $c \neq 0$) are equal.
- 2. If x is real, show that the expression $y = \frac{x^2 + x + 1}{x + 1}$ does not have a value between -3 and 1.
- 3. Let the equations $x^2 + ax + b = 0$ and $x^2 + cx + d = 0$ ($b \neq d$) have one non-zero common root. Form an equation with the other roots of these equations.
- 4. If a, b and c are real numbers, show that the roots of the equation $(a b c)x^2 + ax + b + c = 0$ is real. If one of the roots is twice the other, show that $b + c = \frac{a}{3}$ or $\frac{2a}{3}$.
- 5. If α_1 and β_1 are the roots of the equation $x^2 + 2ax + b^2 = 0$ and α_2 and β_2 are the roots of the equation $x^2 + 2cx + d^2 = 0$, show that :
 - (a) If $\alpha_1 + \alpha_2 = \beta_1 + \beta_2$, then $a^2 + d^2 = b^2 + c^2$,
 - **(b)** If $\alpha_1 \alpha_2 + \beta_1 \beta_2 = 0$, then $b^2 d^2 = a^2 d^2 + b^2 c^2$.
- 6. If the equation $ax^2 + bx + c = 0$ (a $\neq 0$) has real roots, show that the equation $(a + c - b)x^2 - 2(a - c)x + (a + c + b) = 0$ has also real roots.

Show that if α and β are the roots for the first equation, then the product of roots of the second equation is $\frac{(1-\alpha)(1-\beta)}{(1+\alpha)(1+\beta)}$

- 7. If α, β are roots of the equation $x^2 + px + q = 0$ and α_1, β_1 are roots of the equation $x^2 + p_1x + q_1 = 0$. Express $(\alpha - \alpha_1)(\alpha - \beta_1) + (\beta - \alpha_1)(\beta - \beta_1)$ in terms of p, q, p₁ and q₁.
- 8. Show that the expression $\frac{5}{2x^2+3x+3}$ is positive and find its greatest value. Hence find the smallest values of $\frac{6x^2+9x+4}{2x^2+3x+3}$. Sketch the functions of $2x^2 + 3x + 3$, $\frac{5}{2x^2+3x+3}$, $\frac{6x^2+9x+4}{2x^2+3x+3}$ together on the same graph.